Abstract

Position-dependent gene silencing in yeast involves many factors, including the four HIR genes and nucleosome assembly proteins Asf1p and chromatin assembly factor I (CAF-I, encoded by the CAC1-3 genes). Both cac Delta asfl Delta and cac Delta hir Delta double mutants display synergistic reductions in heterochromatic gene silencing. However, the relationship between the contributions of HIR genes and ASF1 to silencing has not previously been explored. Our biochemical and genetic studies of yeast Asf1p revealed links to Hir protein function. In vitro, an active histone deposition complex was formed from recombinant yeast Asf1p and histones H3 and H4 that lack a newly synthesized acetylation pattern. This Asf1p/H3/H4 complex generated micrococcal nuclease--resistant DNA in the absence of DNA replication and stimulated nucleosome assembly activity by recombinant yeast CAF-I during DNA synthesis. Also, Asf1p bound to the Hir1p and Hir2p proteins in vitro and in cell extracts. In vivo, the HIR1 and ASF1 genes contributed to silencing the heterochromatic HML locus via the same genetic pathway. Deletion of either HIR1 or ASF1 eliminated telomeric gene silencing in combination with pol30--8, encoding an altered form of the DNA polymerase processivity factor PCNA that prevents CAF-I from contributing to silencing. Conversely, other pol30 alleles prevented Asf1/Hir proteins from contributing to silencing. Yeast CAF-I and Asf1p cooperate to form nucleosomes in vitro. In vivo, Asf1p and Hir proteins physically interact and together promote heterochromatic gene silencing in a manner requiring PCNA. This Asf1/Hir silencing pathway functionally overlaps with CAF-I activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.