Abstract

Ribonucleotide reductase (RNR) is an essential iron-dependent enzyme that catalyzes deoxyribonucleotide synthesis in eukaryotes. Living organisms have developed multiple strategies to tightly modulate RNR function to avoid inadequate or unbalanced deoxyribonucleotide pools that cause DNA damage and genome instability. Yeast cells activate RNR in response to genotoxic stress and iron deficiency by facilitating redistribution of its small heterodimeric subunit Rnr2-Rnr4 from the nucleus to the cytoplasm, where it forms an active holoenzyme with large Rnr1 subunit. Dif1 protein inhibits RNR by promoting nuclear import of Rnr2-Rnr4. Upon DNA damage, Dif1 phosphorylation by the Dun1 checkpoint kinase and its subsequent degradation enhances RNR function. In this report, we demonstrate that Dun1 kinase triggers Rnr2-Rnr4 redistribution to the cytoplasm in response to iron deficiency. We show that Rnr2-Rnr4 relocalization by low iron requires Dun1 kinase activity and phosphorylation site Thr-380 in the Dun1 activation loop, but not the Dun1 forkhead-associated domain. By using different Dif1 mutant proteins, we uncover that Dun1 phosphorylates Dif1 Ser-104 and Thr-105 residues upon iron scarcity. We observe that the Dif1 phosphorylation pattern differs depending on the stimuli, which suggests different Dun1 activating pathways. Importantly, the Dif1-S104A/T105A mutant exhibits defects in nucleus-to-cytoplasm redistribution of Rnr2-Rnr4 by iron limitation. Taken together, these results reveal that, in response to iron starvation, Dun1 kinase phosphorylates Dif1 to stimulate Rnr2-Rnr4 relocalization to the cytoplasm and promote RNR function.

Highlights

  • Ribonucleotide reductase (RNR)5 catalyzes the rate-limiting step in the de novo deoxyribonucleotide synthesis by converting ribonucleoside diphosphates to the corresponding deoxy forms

  • Dun1 Promotes Rnr2 and Rnr4 Redistribution to the Cytoplasm in Response to Iron Deficiency—We have previously shown that iron deficiency activates Dun1 protein kinase [47]

  • Yeast transformants were grown under ironsufficient conditions (SC), iron-deficient conditions achieved by the addition of Fe2ϩ-specific chelator bathophenanthroline disulfonic acid disodium (BPS), or treated with the DNA alkylating agent methyl methanesulfonate (MMS)

Read more

Summary

Introduction

Ribonucleotide reductase (RNR)5 catalyzes the rate-limiting step in the de novo deoxyribonucleotide (dNTP) synthesis by converting ribonucleoside diphosphates to the corresponding deoxy forms. These results reveal that Dun1 kinase activity is required for efficient nucleus-to-cytoplasm redistribution of RNR small subunit in response to iron deprivation and DNA damage.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.