Abstract

The use of renewable resources to make various synthetic materials is increasing in order to meet some of our sustainability challenges. Yeast is one of the most common household ingredients, which is cheap and easy to reproduce. Herein we report that yeast cells can be thermally transformed into hollow, core-shell heteroatom-doped carbon microparticles that can effectively electrocatalyze the oxygen reduction and hydrazine oxidation reactions, reactions that are highly pertinent to fuel cells or renewable energy applications. We also show that yeast cell walls, which can easily be separated from the cells, can produce carbon materials with electrocatalytic activity for both reactions, albeit with lower activity compared with the ones obtained from intact yeast cells. The results reveal that the intracellular components of the yeast cells such as proteins, phospholipids, DNAs and RNAs are indirectly responsible for the latter's higher electrocatalytic activity, by providing it with more heteroatom dopants. The synthetic method we report here can serve as a general route for the synthesis of (electro)catalysts using microorganisms as raw materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.