Abstract

Temozolomide (TMZ) is an oral DNA-alkylating drug used in colorectal cancer (CRC) chemotherapy. In this work, we proposed a safe and biomimetic platform for macrophages-targeted delivery of TMZ and O6-benzylguanine (O6-BG). TMZ was loaded in poly (D, l-lactide-coglycolide) (PLGA) nanoparticles, followed by sequential coating with O6-BG-grafted chitosan (BG-CS) layers and yeast shell walls (YSW) via layer-by-layer assembly (LBL) process, forming TMZ@P-BG/YSW biohybrids. Due to the yeast cell membrane-camouflage, TMZ@P-BG/YSW particles exhibited significantly enhanced colloidal stability as well as low premature drug leakage in simulated gastrointestinal conditions. In vitro drug release profiles of TMZ@P-BG/YSW particles revealed noticeable higher TMZ release in simulated tumor acidic environment within 72 h. Meanwhile, O6-BG could down-regulate MGMT expression in CT26 colon carcinoma cells, ultimately facilitating TMZ-induced tumor cell death. After oral delivery of yeast cell membrane-camouflaged particles containing fluorescent tracer (Cy5), TMZ@P-BG/YSW and bare YSW displayed high retention time of 12 h in the colon and small intestine (ileum). Correspondingly, oral gavage administration of TMZ@P-BG/YSW particles afforded favorable tumor-specific retention and superior tumor growth inhibition. Overall, TMZ@P-BG/YSW is validated to be a safe, targetable and effective formulation, paving a new avenue towards highly effective and precise treatment of malignancies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call