Abstract

BackgroundLymphatic filariasis is caused by the parasitic worms Wuchereria bancrofti, Brugia malayi or B. timori, which are transmitted via the bites from infected mosquitoes. Once in the human body, the parasites develop into adult worms in the lymphatic vessels, causing severe damage and swelling of the affected tissues. According to the World Health Organization, over 1.2 billion people in 58 countries are at risk of contracting lymphatic filariasis. Very few drugs are available to treat patients infected with these parasites, and these have low efficacy against the adult stages of the worms, which can live for 7–15 years in the human body. The requirement for annual treatment increases the risk of drug-resistant worms emerging, making it imperative to develop new drugs against these devastating diseases.Methodology/Principal FindingsWe have developed a yeast-based, high-throughput screening system whereby essential yeast genes are replaced with their filarial or human counterparts. These strains are labeled with different fluorescent proteins to allow the simultaneous monitoring of strains with parasite or human genes in competition, and hence the identification of compounds that inhibit the parasite target without affecting its human ortholog. We constructed yeast strains expressing eight different Brugia malayi drug targets (as well as seven of their human counterparts), and performed medium-throughput drug screens for compounds that specifically inhibit the parasite enzymes. Using the Malaria Box collection (400 compounds), we identified nine filarial specific inhibitors and confirmed the antifilarial activity of five of these using in vitro assays against Brugia pahangi.Conclusions/SignificanceWe were able to functionally complement yeast deletions with eight different Brugia malayi enzymes that represent potential drug targets. We demonstrated that our yeast-based screening platform is efficient in identifying compounds that can discriminate between human and filarial enzymes. Hence, we are confident that we can extend our efforts to the construction of strains with further filarial targets (in particular for those species that cannot be cultivated in the laboratory), and perform high-throughput drug screens to identify specific inhibitors of the parasite enzymes. By establishing synergistic collaborations with researchers working directly on different parasitic worms, we aim to aid antihelmintic drug development for both human and veterinary infections.

Highlights

  • Lymphatic filariasis is a neglected tropical disease caused primarily by the parasitic nematodes Wuchereria bancrofti and Brugia malayi

  • Lymphatic filariasis is caused by the parasitic worms Wuchereria bancrofti, Brugia malayi or B. timori, which are transmitted via the bites from infected mosquitoes

  • We have developed and validated a yeast-based high-throughput screening assay for the identification of specific inhibitors of filarial targets

Read more

Summary

Introduction

Lymphatic filariasis is a neglected tropical disease caused primarily by the parasitic nematodes Wuchereria bancrofti and Brugia malayi. Marcellino et al [6] successfully developed a whole-plate, motion-based screen for monitoring drug activity against macroscopic parasites (WormAssay). This method was subsequently employed in screens against B. malayi [2], leading to the identification of the antifilarial activity of the FDA-approved drug auranofin. Once in the human body, the parasites develop into adult worms in the lymphatic vessels, causing severe damage and swelling of the affected tissues. Very few drugs are available to treat patients infected with these parasites, and these have low efficacy against the adult stages of the worms, which can live for 7–15 years in the human body. The requirement for annual treatment increases the risk of drug-resistant worms emerging, making it imperative to develop new drugs against these devastating diseases

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call