Abstract
Cryogenic Peltier coolers are ideal for cooling infrared sensors on satellites. To make these thermoelectric devices a realistic option for this application, the efficiency of thermoelectric materials at cryogenic temperatures must be substantially enhanced. Intermediate valence Yb-based compounds have large peaks in the Seebeck coefficient at low temperatures; to optimize these materials this must be understood. We created solid solutions between the intermediate valence compound YbCu2Si2 and an isostructural compound LaCu2Si2 to manipulate the temperature at which the Seebeck coefficient peaks and to maximize zT by reduction of lattice thermal conductivity. An enormous power factor of 110 μW/cm K2 at 100 K and a maximum zT of 0.14 at 125 K were achieved for one of these solid solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.