Abstract

Yb(3)AuGe(2)In(3) was obtained as large single crystals in high yield from reactions run in liquid indium. Single crystal X-ray diffraction data show that Yb(3)AuGe(2)In(3) is an ordered variant of YbAuIn with lattice constants, a = b = 7.3153(8) Å and c = 4.4210(5) Å, and space group P(6)2m. The parent compound YbAuIn was also studied for comparison. YbAuIn crystallizes in the ZrNiAl structure type, hexagonal, P(6)2m space group with lattice parameters a = b = 7.7127(11) Å and c = 4.0294(8) Å. In Yb(3)AuGe(2)In(3), Ge substitutes for one of the two Au positions in the ternary compound Yb(3)Au(3)In(3). The structure can be described as alternating [Ge(2)In(3)] and [Yb(3)Au] slabs that stack along the c-axis. The magnetic susceptibility data follow a modified Curie-Weiss law. The effective magnetic moment μ(eff) of 0.52 μ(B)/Yb atom was deduced from the Curie constant and Curie-Weiss constant of θ(p) = -1.5 K indicating antiferromagnetic interactions in Yb(3)AuGe(2)In(3). X-ray absorption near edge spectroscopy (XANES) measurements indicate intermediate valency for Yb in both compounds. The metallic nature of both compounds was confirmed by the resistivity measurements. Specific heat data for Yb(3)AuGe(2)In(3) and YbAuIn give an electronic γ term of 31 and 84 mJ/mol·K(2), respectively, suggesting that the ternary analog is a "light" heavy fermion compound.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.