Abstract

Since dual-motor driven electric vehicles (DDEVs) can achieve independent and accurate control of the wheel torque, this paper proposes a hierarchical yaw stability control strategy based on model predictive control (MPC) for DDEVs to improve the performance of vehicle yaw stability. A two-degree-of-freedom (2DOF) vehicle dynamic model is developed to calculate the desired vehicle states, which are used as the reference signals in the upper layer controller, based on linear MPC. In the lower layer, a hybrid MPC (hMPC) method is carried out for the torque distribution considering the nonlinear characteristics of the tire longitudinal force and the piecewise linearization of the longitudinal force of the tire is performed. Finally, the proposed strategy is evaluated in Matlab and the results indicate that the suggested hierarchical yaw stability control strategy can significantly improve the vehicle yaw stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call