Abstract

AbstractThe yaw control problem of a prototype unmanned helicopter (UH) with novel configuration is addressed in this paper. The yaw control method based on adaptive model feedback and error compensation is proposed, which can achieve desired flight performance and guarantee the convergence of adjustable parameters in the presence of parametric uncertainties and measurement noises. Moreover, the adaptive error compensator with automatic fade-in and fade-out function can contribute greatly to reducing the tracking error in the initial stage of the adaptive learning process, and eliminate the adverse effect of measurement noises on the output of the adjustable system in the later stage. The effectiveness of the proposed controller is proved by a series of near-ground flight tests. The new methodologies proposed in this study are very effective control tools that help bridge the gaps between adaptive control theory and practical applications in high-performance UHs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.