Abstract

To investigate the role of Srp54p in protein translocation, the Yarrowia lipolytica SRP54 homolog was cloned. Sequencing revealed an open reading frame of 536 amino acids coding for a 57.2 kilodalton polypeptide with 55 to 57% sequence identity to Srp54ps of Saccharomyces cerevisiae, Schizosaccharomyces pombe, and mouse. Like these Srp54ps, Y. lipolytica Srp54p has an N-terminal domain with a highly conserved GTP-binding site and a methionine-rich C-terminal domain. Differing results regarding the essentiality of SRP subunits were obtained. SRP54 is important but not essential for growth, but it was reconfirmed that at least one SRP RNA gene is essential. Cells with SRP54 deleted grow about six times more slowly than wild type; faster-growing colonies, still growing much slower than wild type, appeared quite frequently. In srp54 delta cells, no untranslocated alkaline extracellular protease precursor was detected. Therefore, to develop another reporter molecule the Y. lipolytica KAR2 homolog was cloned and Kar2p antibodies were produced. For Kar2p an untranslocated precursor was detected in srp54 delta but not in wild-type cells, suggesting that its translocation was defective in the srp54 delta cells. These results confirm an in vivo rule for SRP in protein translocation in Y. lipolytica, suggest that SRP RNA or an SRP core-particle has functions not shared by Srp54p, and show that, as in S. cerevisiae and Sz. pombe, reporter molecules differ in their dependency on SRP for translocation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.