Abstract

Chronic kidney disease (CKD) is a major health problem. Kidney fibrosis is a hallmark and final common pathway of CKD. The Hippo/yes-associated protein (YAP) pathway regulates organ size, inflammation, and tumorigenesis. Our previous study demonstrated tubular YAP activation by tubule-specific double knockout of mammalian STE20-like protein kinase 1/2 (Mst1/2) induced CKD in mice, but the underlying mechanisms remain to be fully elucidated. Activator protein (AP)-1 activation was found to promote tubular atrophy and tubulointerstitial fibrosis. Therefore, we studied whether YAP regulates AP-1 expression in the kidney. We found that expression of various AP-1 components was induced in kidneys subjected to unilateral ureteric obstruction and in Mst1/2 double knockout kidneys, and these inductions were blocked by deletion of Yap in tubular cells, with Fosl1 being most affected compared with other AP-1 genes. Inhibition of Yap also most highly suppressed Fosl1 expression among AP-1 genes in HK-2 and IMCD3 renal tubular cells. YAP bound to the Fosl1 promoter and promoted Fosl1 promoter-luciferase activity. Our results suggest that YAP controls AP-1 expression and that Fosl1 is the primary target of YAP in renal tubular cells.NEW & NOTEWORTHY Yes-associated protein (YAP) activation leads to tubular injury, renal inflammation, and fibrosis, but the underlying mechanisms are not fully understood. We now provide genetic evidence that YAP promotes activator protein-1 expression and that Fosl1 is the primary target of YAP in renal tubular cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call