Abstract

ObjectivesInvestigate the role of the Hippo-YAP signaling pathway in radioresistant Nasopharyngeal Carcinoma (NPC). MethodsEstablishment of radioresistant CNE-1 cells (CNE-1-RR) by gradually increasing ionizing radiation (IR) doses, and identifying the apoptosis of CNE-1-RR by flow cytometry. We employed immunoblot and immunofluorescence staining to detect the expression of YAP in both CNE-1-RR and control group cells. Moreover, we validated the role of YAP in CNE-1-RR by inhibiting its nuclear translocation. ResultsIn contrast to the control group, radioresistant NPC cells demonstrated significant YAP dephosphorylation and nuclear translocation. CNE-1-RR cells exhibited enhanced activation of γ-H2AX (Ser139) upon exposure to IR and greater recruitment of double-strand breaks (DSBs) repair-related proteins. Additionally, inhibiting YAP nuclear translocation in radioresistant CNE-1-RR cells significantly increased their sensitivity to radiotherapy. ConclusionsThe present investigation has unveiled the intricate mechanisms and physiological roles of YAP in CNE-1-RR cells exhibiting resistance to IR. Based on our findings, it can be inferred that a combinational therapeutic strategy involving radiotherapy and inhibitors that impede the nuclear translocation of YAP holds promising potential for treating radioresistant NPC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call