Abstract

Background/Aims: The Hippo-Yap pathway is associated with tumor development and progression. However, little evidence is available concerning its role in cancer cell apoptosis and migration via mitochondrial homeostasis. Here, we identify mitochondrial fission as a regulator of the Hippo–Yap pathway in human rectal cancer tumorigenesis and metastasis. Methods: In this study, we performed loss-of function assays concerning Yap in RCC via shRNA. Cellular viability and apoptosis were measured via MTT, the TUNEL assay and trypan blue staining. Mitochondrial function was assessed via JC1 staining, the mPTP opening assay, mitochondrial respiratory function analysis, electron microscopy and immunofluorescence analysis of HtrA2/Omi. Mitophagy and mitochondrial fission were assessed via western blots and immunofluorescence. Cell migration was evaluated via the Transwell assay, wound-healing assay and immunofluorescence analysis of F-actin. The interaction between JNK and Yap was detected via co-immunoprecipitation and Yap recombinant mutagenic plasmid transfection. Western blots were used to analyze signaling pathways in conjunction with JNK inhibitors or HtrA2/Omi siRNA. Results: Yap is upregulated in human rectal cancer cells, where its expression correlates positively with cell survival and migration. Functional studies established that silencing of Yap drove JNK phosphorylation, which induced Drp1 activation and translocation to the surface of mitochondria, initiating mitochondrial fission. Excessive mitochondrial fission mediated HtrA2/Omi leakage from the mitochondria into the cytoplasm, where HtrA2/Omi triggered cellular apoptosis via the mitochondrial apoptosis pathway. Moreover, released HtrA2/Omi also phosphorylated cofilin and inhibited cofilin-mediated F-actin polymerization. F-actin collapse perturbed lamellipodia formation and therefore impaired cellular migration and invasion. Conclusion: Collectively, our results demonstrate that Hippo-Yap can serve as a tumor promoter in human rectal cancer and acts by restricting JNK/Drp1/mitochondrial fission/ HtrA2/Omi, with potential implications for new approaches to human rectal cancer therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.