Abstract

The Hippo signaling pathway regulates cell proliferation and organ growth, and its activation is mainly reflected by the phosphorylation levels of Yes-associated protein (YAP). In this study, we show that YAP facilitates embryonic neural stem cell proliferation by elevating their responsiveness to fibroblast growth factor 2 (FGF2), one of the major growth factors for neural stem cells, in vivo as well as in vitro. Western blot and quantitative real-time PCR analyses revealed that expression of the FGF receptors (FGFRs) FGFR1 to FGFR4 were greatly increased by YAP expression upon FGF2 treatment, followed by upregulation of the mitogen-activated protein kinase and protein kinase B signaling pathways. Furthermore, as assessed by quantitative real-time PCR analyses, YAP-induced FGFR expression was found to be TEA domain transcription factor (TEAD)-independent, and transcriptional coactivator with PDZ-binding motif, the other homolog of Yorki in the Drosophila Hippo signaling pathway, was found to possess similar activity to YAP. Finally, adjustment of FGFR signaling activity in the YAP-expressing cells to control levels efficiently offset the cell proliferative effects of YAP, suggesting that the increased proliferation of YAP-expressing neural stem cells was mainly attributable to enhanced FGFR signaling. Our data indicate that YAP plays an important role in neural stem cell regulation by elevating FGFR expression, subsequently leading to enhanced cell proliferation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.