Abstract

Melanoma is inherently heterogeneous, providing resistance to apoptosis. Anoikis resistance is a hallmark feature of metastatic melanoma to escape apoptosis when cells lose contact with adjacent cells or extracellular matrix. The yes-associated protein transcription co-activator is the effector of Hippo pathway. Herein, we investigated the function of yes-associated protein in anoikis resistance of melanoma cells. When melanoma cells were grown under anchorage-independent condition, anoikis-resistant cells displayed higher levels of yes-associated protein activation than the cells that were attached to the basement membrane, as evidenced by downregulated phosphorylated yes-associated protein at Ser127 and higher expression of downstream genes BCL2 and MCL-1. Yes-associated protein overexpression directly enhanced the anoikis resistance and metastatic potential of melanoma cells. Conversely, yes-associated protein inhibitor CA3 exhibited Dose-dependent induction of anoikis in resistant melanoma cells and exerted great inhibition on cell migration. Knockdown of yes-associated protein expression by shRNA also rendered melanoma cells susceptible to anoikis and interrupted cell invasiveness. Yes-associated protein inhibition in anoikis-resistant cells also reduced the number of metastatic nodules in the lung sections of SCID mice. Clinically, higher yes-associated protein level in the lung metastasis tissues correlated with higher BCL2 and MCL1 expressions compared with the non-metastasis tissues. Overall, our finding suggests that the aberrant activation of yes-associated protein exerts important role on anoikis resistance and metastatic capability of melanoma cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call