Abstract

In this paper, we investigate the Dirichlet weighted eigenvalue problem of a second order uniformly elliptic operator with a nonnegative potential on a bounded domain Ω C ℝ n . First, we prove a general inequality of eigenvalues for this problem. Then, by using this general inequality, we obtain Yang-type inequalities which give universal upper bounds for eigenvalues. An explicit estimate for the gaps of any two consecutive eigenvalues is also derived. Our results contain and extend the previous results for eigenvalues of the Laplacian, the Schrodinger operator and the second order elliptic operator on a bounded domain Ω C ℝ n .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.