Abstract

We find a two-parameter family of solutions of the Yang–Mills equations for gauge group SO(1,3) on Minkowski space by foliating different parts of it with non-compact coset spaces with SO(1,3) isometry. The interior of the lightcone is foliated with hyperbolic space H3≅SO(1,3)/SO(3), while the exterior of the lightcone employs de Sitter space dS≅3SO(1,3)/SO(1,2). The lightcone itself is parametrized by SO(1,3)/ISO(2) in a nilpotent fashion. Equivariant reduction of the SO(1,3) Yang–Mills system on the first two coset spaces yields a mechanical system with inverted double-well potential and the foliation parameter serving as an evolution parameter. Its known analytic solutions are periodic or runaway except for the kink. On the lightcone, only the vacuum solution remains. The constructed Yang–Mills field strength is singular across the lightcone and of infinite action due to the noncompact cosets. Its energy-momentum tensor takes a very simple form, with energy density of opposite signs inside and outside the lightcone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.