Abstract

We study quantizations of transverse slices to Schubert varieties in the affine Grassmannian. The quantization is constructed using quantum groups called shifted Yangians --- these are subalgebras of the Yangian we introduce which generalize the Brundan-Kleshchev shifted Yangian to arbitrary type. Building on ideas of Gerasimov-Kharchev-Lebedev-Oblezin, we prove that a quotient of the shifted Yangian quantizes a scheme supported on the transverse slices, and we formulate a conjectural description of the defining ideal of these slices which implies that the scheme is reduced. This conjecture also implies the conjectural quantization of the Zastava spaces for PGL(n) of Finkelberg-Rybnykov.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.