Abstract

yambo is an ab initio code for calculating quasiparticle energies and optical properties of electronic systems within the framework of many-body perturbation theory and time-dependent density functional theory. Quasiparticle energies are calculated within the GW approximation for the self-energy. Optical properties are evaluated either by solving the Bethe–Salpeter equation or by using the adiabatic local density approximation. yambo is a plane-wave code that, although particularly suited for calculations of periodic bulk systems, has been applied to a large variety of physical systems. yambo relies on efficient numerical techniques devised to treat systems with reduced dimensionality, or with a large number of degrees of freedom. The code has a user-friendly command-line based interface, flexible I/O procedures and is interfaced to several publicly available density functional ground-state codes. Program summary Program title: yambo Catalogue identifier: AEDH_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEDH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public Licence v2.0 No. of lines in distributed program, including test data, etc.: 149 265 No. of bytes in distributed program, including test data, etc.: 2 848 169 Distribution format: tar.gz Programming language: Fortran 95, C Computer: any computer architecture, running any flavor of UNIX Operating system: GNU/Linux, AIX, Irix, OS/X Has the code been vectorised or parallelized?: Yes RAM: 10–1000 Mbytes Classification: 7.3, 4.4, 7.2 External routines: • BLAS ( http://www.netlib.org/blas/) • LAPACK ( http://www.netlib.org/lapack/) • MPI ( http://www-unix.mcs.anl.gov/mpi/) is optional. • BLACS ( http://www.netlib.org/scalapack/) is optional. • SCALAPACK ( http://www.netlib.org/scalapack/) is optional. • FFTW ( http://www.fftw.org/) is optional. • netCDF ( http://www.unidata.ucar.edu/software/netcdf/) is optional. Nature of problem: Calculation of excited state properties (quasiparticles, excitons, plasmons) from first principles. Solution method: Many body perturbation theory (Dyson equation, Bethe Salpeter equation) and time-dependent density functional theory. Quasiparticle approximation. Plasmon-pole model for the dielectric screening. Plane wave basis set with norm conserving pseudopotentials. Unusual features: During execution, yambo supplies estimates of the elapsed and remaining time for completion of each runlevel. Very friendly shell-based user-interface. Additional comments: yambo was known as “SELF” prior to GPL release. It belongs to the suite of codes maintained and used by the European Theoretical Spectroscopy Facility (ETSF) [1]. Running time: The typical yambo running time can range from a few minutes to some days depending on the chosen level of approximation, and on the property and physical system under study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.