Abstract

Single component metal nanoparticles, such as Ag and Au, have surface plasmon resonance wavelengths in the visible region having a weak dependence on particle size. For double component (core/shell) nanoparticles, by proper tuning the core size and shell thickness, a wide variation in optical radiation characteristics as well as in surface plasmon resonance wavelength up to Near-Infrared (NIR) region can be achieved. These aspects encourage one to model an optical Yagi–Uda antenna adopting core/shell nanoparticles as feed element, reflector and directors. In this paper, adopting the COMSOL Multiphysics software, we design all core/shell Yagi–Uda nanoantennas in the NIR domain. $$\hbox {SiO}_{2}/\hbox {Au}$$ core/shell nanoparticles are taken as antenna elements for the proposed antenna, whose surface plasmon resonance wavelength can be shifted to the NIR region by tuning the core to shell size ratio in a particular size band. The optimized directivity and gain for this antenna is achieved with only one reflector and one director, thus making it ultra-compact, cost-effective and simple in structure. This type of very highly directional Yagi–Uda nanoantenna can be used in medical science such as in targeted drug delivery and in wireless optical communication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.