Abstract

BackgroundThere is a significant demand for creating pipelines or workflows in the life science discipline that chain a number of discrete compute and data intensive analysis tasks into sophisticated analysis procedures. This need has led to the development of general as well as domain-specific workflow environments that are either complex desktop applications or Internet-based applications. Complexities can arise when configuring these applications in heterogeneous compute and storage environments if the execution and data access models are not designed appropriately. These complexities manifest themselves through limited access to available HPC resources, significant overhead required to configure tools and inability for users to simply manage files across heterogenous HPC storage infrastructure.ResultsIn this paper, we describe the architecture of a software system that is adaptable to a range of both pluggable execution and data backends in an open source implementation called Yabi. Enabling seamless and transparent access to heterogenous HPC environments at its core, Yabi then provides an analysis workflow environment that can create and reuse workflows as well as manage large amounts of both raw and processed data in a secure and flexible way across geographically distributed compute resources. Yabi can be used via a web-based environment to drag-and-drop tools to create sophisticated workflows. Yabi can also be accessed through the Yabi command line which is designed for users that are more comfortable with writing scripts or for enabling external workflow environments to leverage the features in Yabi. Configuring tools can be a significant overhead in workflow environments. Yabi greatly simplifies this task by enabling system administrators to configure as well as manage running tools via a web-based environment and without the need to write or edit software programs or scripts. In this paper, we highlight Yabi's capabilities through a range of bioinformatics use cases that arise from large-scale biomedical data analysis.ConclusionThe Yabi system encapsulates considered design of both execution and data models, while abstracting technical details away from users who are not skilled in HPC and providing an intuitive drag-and-drop scalable web-based workflow environment where the same tools can also be accessed via a command line. Yabi is currently in use and deployed at multiple institutions and is available at http://ccg.murdoch.edu.au/yabi.

Highlights

  • There is a significant demand for creating pipelines or workflows in the life science discipline that chain a number of discrete compute and data intensive analysis tasks into sophisticated analysis procedures

  • The amount of data and the compute intensive nature of the tasks demand the need to run these tasks on large-scale high performance computing (HPC) infrastructure

  • We introduce Yabi, an Internet-based interface to a workflow engine that solves the problem of workflow deployment across disparate legacy HPC resources

Read more

Summary

Results

We describe the architecture of a software system that is adaptable to a range of both pluggable execution and data backends in an open source implementation called Yabi. Enabling seamless and transparent access to heterogenous HPC environments at its core, Yabi provides an analysis workflow environment that can create and reuse workflows as well as manage large amounts of both raw and processed data in a secure and flexible way across geographically distributed compute resources. Yabi can be used via a web-based environment to drag-and-drop tools to create sophisticated workflows. Configuring tools can be a significant overhead in workflow environments. Yabi greatly simplifies this task by enabling system administrators to configure as well as manage running tools via a web-based environment and without the need to write or edit software programs or scripts. We highlight Yabi’s capabilities through a range of bioinformatics use cases that arise from large-scale biomedical data analysis

Conclusion
Background
Results and discussion
Conclusions
24. Левенштейн ВИ
25. Conway ME

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.