Abstract

β-Catenin plays a dual role as a key effecter in the regulation of adherens junctions as well as a transcriptional co-activator. Tyrosine phosphorylation of β-catenin affects the cell adhesion, migration, and gene transcription in many types of human cancer cells, including acute myeloid leukemia cells with FLT3 internal tandem duplication (FLT3/ITD-AML). Here, we investigated the relationship between three tyrosine residues (Y86, Y142, and Y654) in β-catenin and oncogenic FLT3/ITD kinase. In the experiments using COS-7 cells expressing FLT3/ITD and Wt or mutant β-catenin, FLT3/ITD phosphorylated Y654, and this residue was essential for β-catenin's nuclear localization by FLT3/ITD. Promoter-reporter assays demonstrated that Y654 phosphorylation of β-catenin was closely related to TCF transcriptional activity. In vitro kinase assays, using recombinant FLT3 and biotinylated β-catenin peptide including Y654 showed that FLT3 directly phosphorylated Y654 of β-catenin. These results explain how FLT3/ITD affects the tyrosine phosphorylation, nuclear localization, and transcriptional activity of β-catenin. Targeting Y654 phosphorylation may lead to the development of novel approaches to therapy for FLT3/ITD-AML.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.