Abstract

Classical electrophysiology and contemporary crystallography suggest that the activation gate of voltage-dependent channels is on the intracellular side, but a more extracellular “pore gate” has also been proposed. We have used the voltage dependence of block by extracellular Y3+ as a tool to locate the activation gate of the α1G (CaV3.1) T-type calcium channel. Y3+ block exhibited no clear voltage dependence from −40 to +40 mV (50% block at 25 nM), but block was relieved rapidly by stronger depolarization. Reblock of the open channel, reflected in accelerated tail currents, was fast and concentration dependent. Closed channels were also blocked by Y3+ at a concentration-dependent rate, only eightfold slower than open-channel block. When extracellular Ca2+ was replaced with Ba2+, the rate of open block by Y3+ was unaffected, but closed block was threefold faster than in Ca2+, suggesting the slower closed-block rate reflects ion–ion interactions in the pore rather than an extracellularly located gate. Since an extracellular blocker can rapidly enter the closed pore, the primary activation gate must be on the intracellular side of the selectivity filter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.