Abstract
A new diffusion barrier layer (DBL) is proposed for solid oxide fuel cells (SOFCs) supported on stainless-steel where DBL prevents inter-diffusion of atoms between anode and stainless steel (STS) support during fabrication and operation of STS-supported SOFCs. Half cells consisting of dense yttria-stabilized zirconia (YSZ) electrolyte, porous Ni-YSZ anode layer, and ferritic STS support, with or without Y0.08Sr0.88TiO3–CeO2 (YST-CeO2) composite DBL, are prepared by tape casting and co-firing at 1250 and 1350 °C, respectively, in reducing (H2) atmosphere. The porous YST-CeO2 layer (t ∼ 60 μm) blocks inter-diffusion of Fe and Ni, and captures the evaporated Cr during cell fabrication (1350 °C). The cell with DBL and La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) cathode achieved a maximum power density of ∼220 mW cm−2 which is stable at 700 °C. In order to further improve the power performance, Ni coarsening in anode during co-firing must be prevented or alternative anode which is resistive to coarsening is suggested. This study demonstrates that the new YST-CeO2 layer is a promising as a DBL for stainless-steel-supported SOFCs fabricated with co-firing process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.