Abstract
Organic-inorganic hybrid nanomaterial has gained much attention due to its excellent performances in bioanalysis and biomedicine. However, the preparation of DNA-inorganic hybrid nanomaterial with suitable size for cell uptake remains a huge challenge. Herein, a moderate biomineralization strategy for synthesis of Y-DNA@Cu3(PO4)2 (Y-DNA@CuP) hybrid nanoflowers is reported. Y-DNA with a loop structure is used as both the biomineralization template and the recognition unit for thymidine kinase 1 (TK1) mRNA. The Y-DNA probe can linearly response to TK1 mRNA target sequence in a range from 2 nM to 150 nM with the limit of detection as low as 0.56 nM. Interestingly, the presence of Y-DNA significantly decreases the size of Cu3(PO4)2 (CuP) particles, which allows them suitable for intracellular applications as gene nanocarriers. Once inside the cells, the hybrid nanoflowers dissolve and release the Y-DNA probes. Then, the intracellular TK1 mRNA hybridizes with the loop region of Y-DNA, which dissociates the Cy3-labeled loop strand and turns on the red fluorescence. Through the real-time imaging of the intracellular TK1 mRNA, the assessment of tumor cells before and after the treatment of drugs including β-estradiol and tamoxifen is achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.