Abstract

There are a number of some major advantages to be gained in processing micronic europium-doped yttrium oxide Y 2O 3 particles for phosphor applications using spray pyrolysis. In order to maximise production rates, it is tempting to use relatively dense sprays, but then coalescence occurs increasing final particle diameters, which must be prevented. Moreover, the influence of the operating conditions on the process behaviour is poorly understood. A complete one-dimensional model of the evaporation stage of micronic water/Y(NO 3) 3 droplets considering only the evaporation process and then both evaporation and gravity-induced coalescence phenomena has been established. Calculations of pure evaporation have shown that the amounts of evaporated water and droplet compositions depend only on the local temperature and not on the thermal history of the spray. Coupled calculations have shown that, in comparison with evaporation, coalescence plays a minor role on droplet diameter, but non-negligible as the increase of the final mean droplet diameter due to coalescence reaches up to 10% at low flow rates in the operating conditions tested. Injecting a preheated air flow directly into the nebuliser is a promising method to minimise coalescence effects: optimal operating conditions for which coalescence is completely insignificant were obtained by simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.