Abstract

Citrus canker, caused by the bacterium Xanthomonas citri (Xcc), is one of the most devastating diseases for the citrus industry. Xylose is a constituent of the cell wall of plants, and the ability of Xcc to use this carbohydrate may play a role in virulence. Xcc has two genes codifying for xylose isomerase (XI), a bifunctional enzyme that interconverts D-xylose into D-xylulose and D-glucose into D-fructose. The aim of this work was to investigate the functional role of the two putative XI ORFs, XAC1776 (xylA1) and XAC4225 (xylA2), in Xcc pathogenicity. XI-coding genes of Xcc were deleted, and the single mutants (XccΔxylA1 or XccΔxylA2) or the double mutant (XccΔxylA1ΔxylA2) remained viable. The deletion of one or both XI genes (xylA1 and/or xylA2) increased the aggressiveness of the mutants, causing disease symptoms. RT-qPCR analysis of wild strain and xylA deletion mutants grown in vivo and in vitro revealed that the highest expression level of hrpX and xylR was observed in vivo for the double mutant. The results indicate that XI depletion increases the expression of the hrp regulatory genes in Xcc. We concluded that the intracellular accumulation of xylose enhances Xcc virulence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call