Abstract

BackgroundXylose isomerase (XI) and xylose reductase/xylitol dehydrogenase (XR/XDH) pathways have been extensively used to confer xylose assimilation capacity to Saccharomyces cerevisiae and tackle one of the major bottlenecks in the attainment of economically viable lignocellulosic ethanol production. Nevertheless, there is a lack of studies comparing the efficiency of those pathways both separately and combined. In this work, the XI and/or XR/XDH pathways were introduced into two robust industrial S. cerevisiae strains, evaluated in synthetic media and corn cob hemicellulosic hydrolysate and the results were correlated with the differential enzyme activities found in the xylose-pathway engineered strains.ResultsThe sole expression of XI was found to increase the fermentative capacity of both strains in synthetic media at 30 °C and 40 °C: decreasing xylitol accumulation and improving xylose consumption and ethanol production. Similar results were observed in fermentations of detoxified hydrolysate. However, in the presence of lignocellulosic-derived inhibitors, a positive synergistic effect resulted from the expression of both XI and XR/XDH, possibly caused by a cofactor equilibrium between the XDH and furan detoxifying enzymes, increasing the ethanol yield by more than 38%.ConclusionsThis study clearly shows an advantage of using the XI from Clostridium phytofermentans to attain high ethanol productivities and yields from xylose. Furthermore, and for the first time, the simultaneous utilization of XR/XDH and XI pathways was compared to the single expression of XR/XDH or XI and was found to improve ethanol production from non-detoxified hemicellulosic hydrolysates. These results extend the knowledge regarding S. cerevisiae xylose assimilation metabolism and pave the way for the construction of more efficient strains for use in lignocellulosic industrial processes.

Highlights

  • Xylose isomerase (XI) and xylose reductase/xylitol dehydrogenase (XR/XDH) pathways have been extensively used to confer xylose assimilation capacity to Saccharomyces cerevisiae and tackle one of the major bottlenecks in the attainment of economically viable lignocellulosic ethanol production

  • Effect of different xylose metabolic pathways on the xylose fermentation capacity of S. cerevisiae PE‐2∆GRE3 and CA11 Evaluation of kinetic profiles during xylose fermentation To evaluate the effect of expressing different xylose consumption metabolic pathways, the different constructed strains were characterized for their capacity to metabolize and convert xylose during cotton stopper fermentation in synthetic medium (Fig. 1, Table 1)

  • The strains expressing the XR/XDH accumulated higher quantities of xylitol (Fig. 1B, P < 0.0001) with yields superior to 0.3 g/g at 24 h of fermentation, while the xylitol yield of the PE-XI strain was lower than 0.02 g/g (Table 1)

Read more

Summary

Introduction

Xylose isomerase (XI) and xylose reductase/xylitol dehydrogenase (XR/XDH) pathways have been extensively used to confer xylose assimilation capacity to Saccharomyces cerevisiae and tackle one of the major bottlenecks in the attainment of economically viable lignocellulosic ethanol production. The depletion of fossil fuel reserves, the economic problems associated with their use and the growing environmental concerns related with greenhouse gas emissions have led to a search for new renewable energy sources [1]. The pre-treatment and hydrolysis steps, required to obtain fermentable sugars from lignocellulosic biomass, release inhibitory compounds, such as 5-hydroxymethylfurfural (HMF), furfural and acetic acid [5]. These compounds strongly affect microbial growth and ethanol fermentation [6, 7]. Glucose and xylose are the most abundant monosaccharides present in lignocellulosic hydrolysates, representing between 60–70% and 30–40% of their sugar composition, respectively [8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call