Abstract
Xylo-oligosaccharide (XOS), which is considered as a potential prebiotic, exhibits multiple beneficial effects on modulation of gut microbiota, strength of intestinal barrier, and inhibition of intestinal inflammation. The objective of this study is to investigate whether XOS protects against Salmonella infection by modulating gut microbiota, enhancing the intestinal barrier, and resisting colonization. C57BL/6 male mice received water supplementation with 5% XOS for 14 days before Salmonella Typhimurium infection. The results showed that XOS suppressed the Salmonella-induced inflammation, but had limited effects on tight junction molecules and mRNA expression of mucus proteins, except for claudin-1 in the colon. Data of 16S rDNA sequencing indicated that XOS modulated gut microbiota composition by significantly stimulating Bifidobacterium animalis (B. animalis), and reducing Salmonella counts. Therefore, the potential protective effects of B. animalis against Salmonella challenge were investigated as well. Bifidobacterium animalis subsp lactis BB-12 (BB12), which could markedly increase in XOS, was selected to treat mice. Similarly, Salmonella-induced inflammatory reactions were alleviated by BB12 but tight junction molecules and mucin proteins in the colonic tissues were not affected. Administration of BB12 remarkably decreased the copies of Salmonella in cecal digesta post Salmonella infection. Additionally, the decrease concentrations of cecal propionate and total short-chain fatty acids (SCFAs) in Salmonella-infected mice were reversed by BB12 treatment, and propionate performed a strong inhibitory effect on Salmonella growth in vitro. Besides that, BB12 could directly restrict Salmonella proliferation in vitro. Moreover, BB12 reduced the adhesion ability of Salmonella on the Caco-2 cells model. Our results suggest that XOS could be considered as a candidate of functional food to protect against Salmonella infection by stimulating Bifidobacterium, which then resists Salmonella colonization by maintaining the intestinal SCFAs levels and suppressing adhesibility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.