Abstract
BackgroundThe oxidation of carbohydrates from lignocellulose can facilitate the synthesis of new biopolymers and biochemicals, and also reduce sugar metabolism by lignocellulolytic microorganisms, reserving aldonates for fermentation to biofuels. Although oxidoreductases that oxidize cellulosic hydrolysates have been well characterized, none have been reported to oxidize substituted or branched xylo-oligosaccharides. Moreover, this is the first report that identifies amino acid substitutions leading to GOOX variants with reduced substrate inhibition.ResultsThe recombinant wild type gluco-oligosaccharide oxidase (GOOX) from the fungus Sarocladium strictum, along with variants that were generated by site-directed mutagenesis, retained the FAD cofactor, and showed high activity on cello-oligosaccharide and xylo-oligosaccharides, including substituted and branched xylo-oligosaccharides. Mass spectrometric analyses confirmed that GOOX introduces one oxygen atom to oxidized products, and 1H NMR and tandem mass spectrometry analysis confirmed that oxidation was restricted to the anomeric carbon. The A38V mutation, which is close to a predicted divalent ion-binding site in the FAD-binding domain of GOOX but 30 Å away from the active site, significantly increased the kcat and catalytic efficiency of the enzyme on all oligosaccharides. Eight amino acid substitutions were separately introduced to the substrate-binding domain of GOOX-VN (at positions Y72, E247, W351, Q353 and Q384). In all cases, the Km of the enzyme variant was higher than that of GOOX, supporting the role of corresponding residues in substrate binding. Most notably, W351A increased Km values by up to two orders of magnitude while also increasing kcat up to 3-fold on cello- and xylo-oligosaccharides and showing no substrate inhibition.ConclusionsThis study provides further evidence that S. strictum GOOX has broader substrate specificity than the enzyme name implies, and that substrate inhibition can be reduced by removing aromatic side chains in the -2 binding subsite. Of the enzyme variants, W351A might be particularly advantageous when oxidizing oligosaccharides present at high substrate concentrations often experienced in industrial processes.
Highlights
The oxidation of carbohydrates from lignocellulose can facilitate the synthesis of new biopolymers and biochemicals, and reduce sugar metabolism by lignocellulolytic microorganisms, reserving aldonates for fermentation to biofuels
Few publications describe the activity of gluco-oligosaccharide oxidases (GOOX, EC 1.1.3.-), which are classified as family AA7 enzymes, and exhibit high catalytic activity on oligomeric substrates [6,7]
Reports of GOOX-T1 from the fungus Sarocladium strictum T1 confirmed oxidation of the hydroxyl group attached to the anomeric carbon of maltose [6]; other analyses revealed even higher activities on cello-oligosaccharides, cellotriose [9,10]
Summary
The oxidation of carbohydrates from lignocellulose can facilitate the synthesis of new biopolymers and biochemicals, and reduce sugar metabolism by lignocellulolytic microorganisms, reserving aldonates for fermentation to biofuels. Oxidoreductases that oxidize cellulosic hydrolysates have been well characterized, none have been reported to oxidize substituted or branched xylo-oligosaccharides. This is the first report that identifies amino acid substitutions leading to GOOX variants with reduced substrate inhibition. Like other flavin carbohydrate oxidases that target the hydroxyl group of the anomeric carbon, GOOX-T1 is thought to mediate oxidoreductase activity through two half-reactions: 1) oxidation of the reducing sugar to the corresponding lactone, and 2) reduction of molecular oxygen to hydrogen peroxide [11]. More recent applications of CDH demonstrate the benefit of carbohydrate oxidation to reduce sugar consumption by lignocellulolytic fungi, thereby maximizing ethanol yields from fermenting microorganisms [13]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.