Abstract

In this work, the industrial Saccharomyces cerevisiae PE-2 strain, presenting innate capacity for xylitol accumulation, was engineered for xylitol production by overexpression of the endogenous GRE3 gene and expression of different xylose reductases from Pichia stipitis. The best-performing GRE3-overexpressing strain was capable to produce 148.5 g/L of xylitol from high xylose-containing media, with a 0.95 g/g yield, and maintained close to maximum theoretical yields (0.89 g/g) when tested in non-detoxified corn cob hydrolysates. Furthermore, a successful integrated strategy was developed for the production of xylitol from whole slurry corn cob in a presaccharification and simultaneous saccharification and fermentation process (15% solid loading and 36 FPU) reaching xylitol yield of 0.93 g/g and a productivity of 0.54 g/L·h. This novel approach results in an intensified valorization of lignocellulosic biomass for xylitol production in a fully integrated process and represents an advance towards a circular economy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call