Abstract

An experimental study of xylene isomers interconversion (isomerization) kinetics was conducted to gain a deeper insight into the field. Two beta zeolites with SiO2/Al2O3 ratio of 35 (BEA35) and 38 (BEA38) were used as catalysts for the performed experiments. The isomerization reactions were carried out under the following conditions: 513, 493, 473, and 453 K at 2.1 MPa in liquid phase. It was verified that all reactions were in the kinetic-controlled regime. Kinetic constants were estimated with four different models; two of them were based on the xylene isomerization thermodynamic equilibrium from the literature. The linear reaction scheme, which does not consider the direct conversion between p- and o-xylene, presented a better fit to the experimental values. Higher conversion of p-xylene was observed when compared with the conversion of the other two isomers. This may be attributed to its smaller molecular size. BEA35 presented better performance due to its higher amount of Bronsted acid sites. Finally...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.