Abstract

Secondary cell wall biosynthesis has been shown to be regulated by a suite of transcription factors. Here, we identified a new xylem vessel-specific NAC domain transcription factor, secondary wall-associated NAC domain protein5 (SND5), in Arabidopsis thaliana and studied its role in regulating secondary wall biosynthesis. We showed that the expression of SND5 and its close homolog, SND4/ANAC075, was specifically associated with secondary wall-containing cells and dominant repression of their functions severely reduced secondary wall thickening in these cells. Overexpression of SND4/5 as well as their homologs SND2/3 fused with the activation domain of the viral protein VP16 led to ectopic secondary wall deposition in cells that are normally parenchymatous. SND2/3/4/5 regulated the expression of the same downstream target genes as do the secondary wall NAC master switches (SWNs) by binding to and activating the secondary wall NAC binding elements (SNBEs). Furthermore, we demonstrated that the poplar (Populus trichocarpa) orthologs of SND2/3/4/5 also activated SNBEs and regulated secondary wall biosynthesis during wood formation. Together, these findings indicate that SND2/3/4/5 and their poplar orthologs regulate the expression of secondary wall-associated genes through activating SNBEs and they are positioned at an upper level in the SWN-mediated transcriptional network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.