Abstract

Xylem sap from broccoli (Brassica oleracea L. cv. Calabrais), rape (Brassica napus L. cv. Drakkar), pumpkin (Cucurbita maxima Duch. cv. gelber Zentner) and cucumber (Cucumis sativus L. cv. Hoffmanns Giganta) was collected by root pressure exudation from the surface of cut stems of healthy, adult plants. Total protein concentrations were in the range of 100 microg ml(-1). One-dimensional gel electrophoresis (SDS-PAGE) resulted in 10-20 visible protein bands in a molecular mass range from 10 to 100 kDa. The main bands were cut out, digested with trypsin, and analysed using tandem mass spectrometry. Fifty bands resulted in amino acid sequence information that was used to perform database similarity searches. Sequences from 30 bands showed high homology to proteins present in databases. Among them, we found mostly peroxidases, but could also identify the lectin-like xylem protein XSP30, a glycine-rich protein, serine proteases, an aspartyl protease family protein, chitinases, and a lipid transfer protein-like polypeptide. Sequence analysis predicted apoplastic secretion signals for all database entries similar to the partial xylem protein sequences. This and the lack of cross-reactivity with phloem protein-specific antibodies suggest that the proteins really originate from the xylem and do not result from phloem contamination. Most of the highly similar proteins probably function in repair and defence reactions. Some of the most abundant proteins (peroxidases, chitinases, serine proteases) were present in xylem exudate of all species analysed, often in more than one band. This indicates an important basic role of these proteins in maintaining xylem function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.