Abstract

ABSTRACTThe absolute pressure in conducting xylem vessels of roots of 2‐week‐old, slowly transpiring intact maize plants (bathed in nutrition medium) was determined to be +0·024 ± 0·044 MPa using the xylem pressure probe. When the roots were subjected to osmotic stress (NaCI, KCI or sucrose), the xylem pressure decreased immediately and became more negative. However, the response of xylem pressure to osmotic stress was considerably attenuated, indicating that the radial reflection coefficients, σ13 of the maize root for these solutes were rather low (between 0·2 and 0·4 depending on the concentration of the osmoticum). The low values of a, may be caused (partly) by unstirred layer effects. In repeated osmoticum/nutrition regimes a complex pattern of changes in xylem pressure was observed which was apparently linked to the interplay between transpiration and (passive and/or active) solute loading of the xylem. These processes were not observed when the roots were subjected to osmotic stress after excision. In this case, a biphasic response was observed comparable to that found for excised roots using the root pressure probe.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call