Abstract

Utilizing the full potential linearized augment plane wave method with the modified Becke–Johnson potential, the half-metallicity and electronic structures of zinc blend YSi and YSi/CdTe interfaces were investigated. Calculations show the equilibrium lattice parameter for zinc blend YSi is 6.57 Angstrom, which is good compatibility with CdTe. Under theoretical equilibrium lattice parameters, zinc blend YSi is a half-metallic ferromagnet. The total magnetic moment is 1.00 μB per cell. Electronic structures show the half-metallic gap is 0.391 eV and p-d hybridization mechanism plays a crucial role in forming half-metallic ferromagnetism. Half-metallic ferromagnetism preserved in YSi/CdTe interfaces implies CdTe would be a promising substrate for epitaxial growth zinc blend YSi films. Negative cohesive energy and heat of formation indicate zinc blend YSi could be fabricated experimentally.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.