Abstract

Xylan is the most abundant hemicellulose in nature and as such it is a huge source of renewable carbon. Its bioconversion requires a battery of xylanolytic enzymes. Of them the most important are the endo-β-1,4-xylanases which depolymerize the polysaccharide into smaller fragments. Most of the xylanases are members of glycoside hydrolase (GH) families 10 and 11, although they are classified in some other GH families. The relatively new xylanases of GH30 are of special interest. Initially, they appeared to be specific glucuronoxylanases, however, other specificities were found later among prokaryotic and in particular eukaryotic enzymes. This review gives an overview of the substrate and product specificities observed for the GH30 xylanases characterized to date. An emphasis is given to the structure-activity relationship in order to explain how minor differences in catalytic centre and its vicinity can alter catalytic properties from the endoxylanase into the reducing end xylose releasing exoxylanase or into the non-reducing end xylobiohydrolase. Biotechnological potential of the GH30 xylanases is also considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call