Abstract

In this work, the successful derivatization of a beechwood xylan (BX) by carboxymethylation and hydroxypropylation was achieved aimed to produce bio-based films. Carboxymethyl xylan (CMX) and hydroxypropyl xylan (HPX) with a substitution degree of 0.3 and 1.1, respectively, as determined by 1H NMR, were synthesised. The xylan’s characterization by thermogravimetric analysis showed that HPX is thermally more stable than CMX or BX. The ability of the xylan derivatives to form films and the effect of the glycerol addition on the films performance were evaluated. Tensile strength, Young’s modulus and water vapour permeability of self-supporting CMX films were higher and the elongation at break lower than those of the corresponding HPX films. The water vapour barrier properties of CMX and HPX films were improved with 10% glycerol addition. Oxygen barrier property was exceptionably good for a CMX film plasticized with 25% of glycerol (oxygen permeability of 0.5cm3μmm−2d−1kPa−1) while higher oxygen permeability values were obtained for HPX films. Favourable characteristics were found that may enable the use of these films in, e.g., coatings for packaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.