Abstract

This paper presents a piezo-driven compliant stage for nano positioning with two degree-of-freedom parallel linear motions. Nano positioning is one of the most important factors in completion of nanotechnologies. It can be accomplished by flexure-based compliant stages driven by piezo-actuators. For compact configuration, the compliant stage is stacked by two-layered compliant mechanisms. The upper layer contains a motion guide mechanism, and the lower layer two displacement amplification mechanisms. The motion guide mechanism consists of four prismatic-prismatic parallel compliant joint chains for two translational motion guides. The displacement amplification mechanism is adopted by a flexure-based flextensional amplification mechanism driven by a stack-type piezo actuator. Due to the parallel compliant joint chains, the stage has the same dynamics in the x and y axes. In this study, through design and analysis, the mechanisms were machined via wire electro-discharge machining and are were then integrated with two stack-type piezoelectric elements for actuation, and two capacitive sensors for ultra-precision displacement measurement. Finally, experiments were carried out to demonstrate the performance of the compliant stage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.