Abstract

Using ab-initio non-Born-Oppenheimer simulations, we demonstrate amplification of XUV radiation in a high-harmonic generation type process using the example of the hydrogen molecular ion. A small fraction of the molecules is pumped to a dissociative Rydberg state from which IR-assisted XUV amplification is observed. We show that starting at sufficiently high IR driving field intensities the ground state molecules become quasi-transparent for XUV radiation, while due to stabilization gain from Rydberg states is maintained, thus leading to lasing from strongly driven Rydberg states. Further increase of the IR intensity even leads to gain by initially unexcited molecules, which are quickly excited by the driving IR pulse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.