Abstract

Microfluidic devices have been conventionally fabricated using traditional photolithography or through the use of soft lithography both of which require multiple complicated steps and a clean room setup. Xurography is an alternative rapid prototyping method which has been used to fabricate microfluidic devices in less than 20–30 minutes. The method is used to pattern two-dimensional pressure-sensitive adhesives, polymer sheets, and metal films using a cutting plotter and these layers are bonded together using methods including adhesive, thermal, and solvent bonding. This review discusses the working principle of xurography along with a critical analysis of parameters affecting the patterning process, various materials patterned using xurography, and their applications. Xurography can be used in the fabrication of microfluidic devices using four main approaches: making multiple layered devices, fabrication of micromolds, making masks, and integration of electrodes into microfluidic devices. We have also briefly discussed the bonding methods for assembling the two-dimensional patterned layers. Due to its simplicity and the ability to easily integrate multiple materials, xurography is likely to grow in prominence as a method for fabrication of microfluidic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.