Abstract

Ethnopharmacological relevanceXuefu Zhuyu Decoction (XZD), a renowned traditional Chinese medicine prescription, is widely employed for the management of conditions characterized by qi-stagnation and blood stasis. Although its anti-thrombotic effect on deep vein thrombosis (DVT) patients has been clinically observed, the underlying mechanism remains largely unexplored. Aim of the studyOur aim was to investigate the mechanisms by which XZD exerted its effect on DVT. Materials and methodsThe ultra performance liquid chromatography (UPLC) technique was employed to evaluate quality of XZD. To examine the effect of XZD on DVT, a DVT rat model with inferior vena cava (IVC) stenosis was established. The 4D-label-free proteomics approach was then utilized to uncover the possible mechanisms of XZD against DVT. Based on proteomics, citrullinated histone H3 (CitH3), along with serum levels of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) were observed the inhibitory activity of XZD on neutrophil activation. Subsequently, the marker of platelet activation, specifically glycoprotein IIb (CD41) and glycoprotein IIIa (CD61), were assessed along with the secretion of von Willebrand factor (vWF) to investigate the inhibitory activity of XZD on platelet activation. Finally, we explored the impact of XZD on the sirtuin 1 (SIRT1)/nuclear factor kappa-B (NF-κB) pathway, which was associated with the activation of platelets and neutrophils. ResultsEight distinct components were identified for the quality control of XZD. XZD effectively reduced thrombus weight and length in DVT rats, without affecting the coagulation function or hematological parameters in the systemic circulation. Proteomics analysis revealed that XZD alleviated DVT by inhibiting the activation of platelets and neutrophils. The protein expression of CitH3, along with serum levels of TNF-α and IL-1β, were reduced in XZD-treated DVT rats. Similarly, protein expressions of CD41 and CD61, along with the release of vWF, were markedly down-regulated in XZD-treated DVT rats. Finally, treatment with XZD resulted in an up-regulation of SIRT1 protein expression and a down-regulation of both acetylated NF-κB/p65 and phosphorylated NF-κB/p65 protein expressions in endothelium. ConclusionsXZD alleviates DVT by inhibiting the activation of platelets and neutrophils at the injured endothelium via the regulation of SIRT1/NF-κB pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call