Abstract

Xuebijing (XBJ) injection is a herbal medicine that has been widely used in the treatment of sepsis in China; however, its role in the development and progression of Acinetobacter baumannii sepsis and the underlying mechanisms remain uninvestigated. In the present study, fifty-four male Wistar rats were randomly assigned to normal-control group, sepsis-control group, and sepsis + XBJ group, each containing three subgroups of different treatment time periods (6, 12, and 24 hrs following injection, resp.). The sepsis model was established by intraperitoneal injection of A. baumannii ATCC 19606. For XBJ treatment, 4 mL/kg XBJ was administrated simultaneously by intravenous injection through caudal vein every 12 hrs. All animals demonstrated ill state, obvious intestinal dysfunction, histopathological lung damages, and overactive inflammatory responses after A. baumannii infection, and these events could be partially reversed by XBJ treatment from the beginning of infection. XBJ induced an increase in the expression of anti-inflammatory mediator annexin A1; however, two proinflammatory cytokines, interleukin-8 (IL-8) and tumor necrosis factor-α (TNF-α), were decreased at the each monitored time point. These findings suggested that XBJ via its cytokine-mediated anti-inflammatory effects might have a potential role in preventing the progression of A. baumannii infection to sepsis by early administration.

Highlights

  • Acinetobacter baumannii (A. baumannii) is a Gram-negative coccobacillus associated primarily with nosocomial infections

  • XBJ is an intravenous injection consisting of five traditional Chinese medicine (TCM) selected out from thirty-six traditional Chinese herb compound formulas

  • Our data from the present study showed that rats with XBJ and A. baumannii concurrently administration elicited improved abnormal symptoms or signs and an early drop of the bacterial load in the peritoneal cavity, compared to those of rats with A. baumannii infection alone

Read more

Summary

Introduction

Acinetobacter baumannii (A. baumannii) is a Gram-negative coccobacillus associated primarily with nosocomial infections. This microorganism has relevant clinical implications as it survives on almost every surface and develops resistance to all available antibiotics [1]. Evidence suggests that A. baumannii infections can be shown to manifest as bacteremia, pneumonias, meningitis, urinary tract infections, surgical site infections, and even sepsis [2, 3]. Sepsis is a systemic inflammatory response to infection that is initiated by bacteria and their related toxins. Ranging from the systemic inflammatory response syndrome (SIRS) and its complications septic shock and multiple organ dysfunction syndrome (MODS), sepsis represents the leading cause of death in intensive care patients. Urgent needs exist for both advances in the understanding of sepsis pathogenesis and new agents to treat A. baumannii infection

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call