Abstract

In eukaryotes, the degradation of cellular mRNAs is accomplished by Xrn1 and the cytoplasmic exosome. Because viral RNAs often lack canonical caps or poly-A tails, they can also be vulnerable to degradation by these host exonucleases. Yeast lack sophisticated mechanisms of innate and adaptive immunity, but do use RNA degradation as an antiviral defense mechanism. We find a highly refined, species-specific relationship between Xrn1p and the “L-A” totiviruses of different Saccharomyces yeast species. We show that the gene XRN1 has evolved rapidly under positive natural selection in Saccharomyces yeast, resulting in high levels of Xrn1p protein sequence divergence from one yeast species to the next. We also show that these sequence differences translate to differential interactions with the L-A virus, where Xrn1p from S. cerevisiae is most efficient at controlling the L-A virus that chronically infects S. cerevisiae, and Xrn1p from S. kudriavzevii is most efficient at controlling the L-A-like virus that we have discovered within S. kudriavzevii. All Xrn1p orthologs are equivalent in their interaction with another virus-like parasite, the Ty1 retrotransposon. Thus, Xrn1p appears to co-evolve with totiviruses to maintain its potent antiviral activity and limit viral propagation in Saccharomyces yeasts. We demonstrate that Xrn1p physically interacts with the Gag protein encoded by the L-A virus, suggesting a host-virus interaction that is more complicated than just Xrn1p-mediated nucleolytic digestion of viral RNAs.

Highlights

  • Degradation of mRNAs is a process essential to cell viability

  • We find that two different L-A viruses of Saccharomyces yeasts are best controlled by the Xrn1p from their own host species compared to the PLOS Pathogens | DOI:10.1371/journal.ppat

  • Xrn1p from S. cerevisiae was most efficient at controlling the L-A virus that chronically infects S. cerevisiae, and Xrn1p from S. kudriavzevii was most efficient at controlling the L-A-like virus (SkV-L-A1) that we discovered within S. kudriavzevii

Read more

Summary

Introduction

Degradation pathways eliminate aberrant mRNAs, and act to control gene expression levels. This process typically begins with host enzymes that perform either deadenylation or decapping on mRNAs targeted for degradation [1]. Still unknown is whether the host proteins like Xrn and components of the exosome can co-evolve with viruses to circumvent viral countermeasures. While such tit-for-tat evolution is common in mammalian innate immunity pathways, mRNA degradation is essential to the host and would be expected to be subject to strong evolutionary constraint

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.