Abstract

The Calcium modified PbTiO3 ceramics with large piezoelectric anisotropy was poled in consecutive steps. X-ray diffraction (XRD) found that the values of inter-planar spacing, d002 and d200, increased with poling field at initial poling stages. A noticeable drop of the d¬002 and d200 at the coercive field was observed. The residual stresses measured by the  angle tilt method were introduced. The relations of d002-sin2ψ and d¬¬200-sin2ψ at different poling stages were simulated by a mathematic model. The linear terms in the model are related to the macro-stress which may cause an elastic deformation; the exponential term in the model is related to the micro-stress which may cause a plastic deformation by the 90o domain switch. The results show that macro-stress and micro-stress decreased and the decay speed along  angle increased as to the d002 lattice spacing. The residual stresses related to the d200 lattice spacing were almost not changed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.