Abstract
The Calcium modified PbTiO3 ceramics with large piezoelectric anisotropy was poled in consecutive steps. X-ray diffraction (XRD) found that the values of inter-planar spacing, d002 and d200, increased with poling field at initial poling stages. A noticeable drop of the d¬002 and d200 at the coercive field was observed. The residual stresses measured by the angle tilt method were introduced. The relations of d002-sin2ψ and d¬¬200-sin2ψ at different poling stages were simulated by a mathematic model. The linear terms in the model are related to the macro-stress which may cause an elastic deformation; the exponential term in the model is related to the micro-stress which may cause a plastic deformation by the 90o domain switch. The results show that macro-stress and micro-stress decreased and the decay speed along angle increased as to the d002 lattice spacing. The residual stresses related to the d200 lattice spacing were almost not changed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.