Abstract

The purpose of this work was to study the role of cesium in sodium‐based geopolymer and its thermal stability for nuclear waste management. A series of mixed sodium and cesium geopolymer samples (Na1−x Cs x )2O·Al2O3·SiO2·12H2O (referred to as (Na1− x Cs x )‐GP, where x = 0, 0.08, 0.15, 0.42, 1) have been prepared. All geopolymer samples were heated at 1100°C for 24 h. Pollucite (CsAlSi2O6) and feldspathoid (CsAlSiO4) were crystallized from Cs‐GP. Nepheline (NaAlSiO4) and a small amount of crystallized silica were obtained from Na‐GP. The other geopolymers (Na1− x Cs x )‐GP (x = 0.08, 0.15, 0.42) led to pollucite and nepheline main phases. Amorphous silica phase was observed in all the geopolymer samples with various amounts. Phase quantification and scanning electron microscope revealed that higher Cs concentrations in Na‐GP tend to decrease the amorphous phase while improving pollucite and nepheline phase quantification. The amorphous geopolymers have also been studied by pair distribution function analysis. Tetrahedral chains formed by T–O bonding (with T = Si, Al) were shown to be more tighten around Cs+ than around Na+. It led to shorter Cs–T bond than Na–T bond matching the higher solvation property of Na+. Furthermore, thermal study analysis pointed out the fact that geopolymer samples (Na1− x Cs x )‐GP, can be considered as solid solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.