Abstract

Me-lex is a sequence-specific alkylating agent synthesized to preferentially (>90%) generate N3-methyladenine (3-mA) in the minor groove of double-strand DNA, in A-T rich regions. In this paper we investigated the effect of XRCC1 deficiency in the processing of 3-mA adducts generated by Me-lex, through the molecular analysis of the Hprt mutations and the evaluation of cytogenetic end points such as sister chromatid exchanges (SCEs), micronuclei (MN) and nucleus fragmentation. EM-C11 cells, deficient in XRCC1 activity, showed a 2.5-fold higher sensitivity to the toxicity of Me-lex compared to the DNA repair proficient parental CHO-9 cells, but were not hyper mutable. The spontaneous mutation spectrum at the Hprt locus generated in EM-C11 cells revealed a high percentage of genomic deletions. After Me-lex treatment, the percentage of genomic deletions did not increase, but a class of mutations which appeared to target regulatory regions of the gene significantly increased ( p = 0.0277), suggesting that non-coding Hprt genomic sequences represent a strong target for the rare mutations induced by Me-lex. The number of SCEs per chromosome increased 3-fold above background in 50 μМ Me-lex treated CHO-9 cells, while at higher Me-lex concentrations a sharp increase in the percentage of MN and fragmented nuclei was observed. In EM-C11 cells the background level of SCEs (0.939 ± 0.182) was approximately 10-fold higher than in CHO-9 (0.129 ± 0.027) and higher levels of multinucleated cells and MN were also found. In EM-C11, even low doses of Me-lex (25 μM) led to a significant increase in genomic damage. These results indicate that XRCC1 deficiency can lead to genomic instability even in the absence of an exogenous genotoxic insult and low levels of Me-lex-induced lesions, i.e., 3-mA and/or a BER intermediate, can exacerbate this instability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.