Abstract

The evolution of Ytterbium 2F5/2 and Erbium 4I13/2 energy level lifetimes versus doses of various radiation types (40keV X-rays, 480MeV protons, 1.2MeV γ-rays and 6MeV electrons) were investigated on samples of silica-based Rare-Earth Doped optical Fibers (REDFs). For each studied sample (Er-doped and Er/Yb-doped), a strong dependence of the lifetime value on the irradiation dose (for equivalent doses ranging from 10Gy(SiO2) to 10MGy(SiO2)) is observed regardless of the radiation nature. For both fiber types and luminescent ions, complex dose dependences are observed: a limited decrease of the lifetime at the lower doses, whereas a large reduction is reported at doses exceeding 100kGy(SiO2). The results highlighted the vulnerability of REDF based systems, such as optical amplifiers and sources, for space and nuclear applications. In such harsh environments, Radiation Induced Attenuation (RIA) is also a key issue. The positive effect of Ce co-doping on both the RIA and the lifetimes is reported even at the highest dose of 10MGy(SiO2). The basic mechanisms involved during the interaction between radiation and fiber material were also investigated through low temperature spectroscopic measurements that revealed the fundamental role of radiation-induced point defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.