Abstract

Large diameter aluminum nitride (AlN) substrates, up to 50 mm, were manufactured from single crystal boules grown by physical vapor transport (PVT). Synchrotron-based x-ray topography (XRT) was used to characterize the density, distribution, and type of dislocations. White beam topography images acquired in transmission geometry were used to analyze basal plane dislocations (BPDs) and low angle grain boundaries (LAGBs), while monochromatic beam, grazing incidence images were used to analyze threading dislocations. Boule diameter expansion, without the introduction of LAGBs around the periphery, was shown. A 48 mm substrate with a uniform threading dislocation density below 7.0 x 102 cm-2 and a BPD of 0 cm-2, the lowest dislocation densities reported to date for an AlN single crystal this size, was demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.