Abstract

Mahdavi et al. find that the degree of agreement between weak lensing and X-ray mass measurements is a function of cluster radius. Numerical simulations also point out that X-ray mass proxies do not work equally well at all radii. The origin of the effect is thought to be associated with cluster mergers. Recent work presenting the cluster maps showed an ability of X-ray maps to reveal and study cluster mergers in detail. Here we present a first attempt to use the study of substructure in assessing the systematics of the hydrostatic mass measurements using two-dimensional (2-D) X-ray diagnostics. The temperature map is uniquely able to identify the substructure in an almost relaxed cluster which would be unnoticed in the ICM electron number density and pressure maps. We describe the radial fluctuations in the 2-D maps by a cumulative/differential scatter profile relative to the mean profile within/at a given radius. The amplitude indicates ~10 fluctuations in the temperature, electron number density and entropy maps, and ~15 fluctuations in the pressure map. The amplitude of and the discontinuity in the scatter complement 2-D substructure diagnostics, e.g. indicating the most disturbed radial range. There is a tantalizing link between the substructure identified using the scatter of the entropy and pressure fluctuations and the hydrostatic mass bias relative to the expected mass based on the M-Yx and M-Mgas relations particularly at r500. XMM-Newton observations with ~120,000 source photons from the cluster are sufficient to apply our substructure diagnostics via the spectrally measured 2-D temperature, electron number density, entropy and pressure maps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.